Physical Quantities
Quantity | Definition | Formula | Units | Dimensions | |
---|---|---|---|---|---|
Length or Distance | fundamental | d | m (meter) | L (Length) | |
Time | fundamental | t | s (second) | T (Time) | |
Mass | fundamental | m | kg (kilogram) | M (Mass) | |
Area | distance2 | A = d2 | m2 | L2 | |
Volume | distance3 | V = d3 | m3 | L3 | |
Density | mass / volume | d = m/V | kg/m3 | M/L3 | |
Velocity | distance / time | v = d/t | m/s c (speed of light) |
L/T | |
Acceleration | velocity / time | a = v/t | m/s2 | L/T2 | |
Momentum | mass × velocity | p = m·v | kg·m/s | ML/T | |
Force Weight |
mass × acceleration mass × acceleration of gravity |
F = m·a W = m·g |
N (newton) = kg·m/s2 | ML/T2 | |
Pressure or Stress | force / area | p = F/A | Pa (pascal) = N/m2 = kg/(m·s2) | M/LT2 | |
Energy or Work Kinetic Energy Potential Energy |
force × distance mass × velocity2 / 2 mass × acceleration of gravity × height |
E = F·d KE = m·v2/2 PE = m·g·h |
J (joule) = N·m = kg·m2/s2 | ML2/T2 | |
Power | energy / time | P = E/t | W (watt) = J/s = kg·m2/s3 | ML2/T3 | |
Impulse | force × time | I = F·t | N·s = kg·m/s | ML/T | |
Action | energy × time momentum × distance |
S = E·t S = p·d |
J·s = kg·m2/s h (quantum of action) |
ML2/T | |
Angle | fundamental | θ | ° (degree), rad (radian), rev 360° = 2π rad = 1 rev |
dimensionless | |
Cycles | fundamental | n | cyc (cycles) | dimensionless | |
Frequency | cycles / time | f = n/t | Hz (hertz) = cyc/s = 1/s | 1/T | |
Angular Velocity | angle / time | ω = θ/t | rad/s = 1/s | 1/T | |
Angular Acceleration | angular velocity / time | α = ω/t | rad/s2 = 1/s2 | 1/T2 | |
Moment of Inertia | mass × radius2 | I = m·r2 | kg·m2 | ML2 | |
Angular Momentum | radius × momentum moment of inertia × angular velocity |
L = r·p L = I·ω |
J·s = kg·m2/s ћ (quantum of angular momentum) |
ML2/T | |
Torque or Moment | radius × force moment of inertia × angular acceleration |
τ = r·F τ = I·α |
N·m = kg·m2/s2 | ML2/T2 | |
Temperature | fundamental | T | °C (celsius), K (kelvin) | K (Temp.) | |
Heat | heat energy | Q | J (joule) = kg·m2/s2 | ML2/T2 | |
Entropy | heat / temperature | S = Q/T | J/K | ML2/T2K | |
Electric Charge +/- | fundamental | q | C (coulomb) e (elementary charge) |
C (Charge) | |
Current | charge / time | i = q/t | A (amp) = C/s | C/T | |
Voltage or Potential | energy / charge | V = E/q | V (volt) = J/C | ML2/CT2 | |
Resistance | voltage / current | R = V/i | Ω (ohm) = V/A | ML2/C2T | |
Capacitance | charge / voltage | C = q/V | F (farad) = C/V | C2T2/ML2 | |
Inductance | voltage / (current / time) | L = V/(i/t) | H (henry) = V·s/A | ML2/T2 | |
Electric Field | voltage / distance force / charge |
E = V/d E = F/q |
V/m = N/C | ML/CT2 | |
Electric Flux | electric field × area | ΦE = E·A | V·m = N·m2/C | ML3/CT2 | |
Magnetic Field | force / (charge × velocity) | B = F/q·v | T (tesla) = Wb/m2 = N·s/(C·m) | M/CT | |
Magnetic Flux | magnetic field × area | ΦM = B·A | Wb (weber) = V·s = J·s/C | ML2/CT |
Note: Other conventions
define different quantities to be fundamental.
Mass, energy, momentum, angular momentum, and
charge are conserved, which means the total amount does not change in an
isolated system.
0 komentar:
Posting Komentar